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Abstract

The emergence of multicore processors raises the need
to efficiently transfer large amounts of data between local
processes. MPICH2 is a highly portable MPI implemen-
tation whose large-message communication schemes suffer
from high CPU utilization and cache pollution because of
the use of a double-buffering strategy, common to many
MPI implementations. We introduce two strategies offer-
ing a kernel-assisted, single-copy model with support for
noncontiguous and asynchronous transfers. The first one
uses the now widely available vmsplice Linux system call;
the second one further improves performance thanks to a
custom kernel module called KNEM. The latter also offers
I/OAT copy offload, which is dynamically enabled depend-
ing on both hardware cache characteristics and message
size. These new solutions outperform the standard trans-
fer method in the MPICH2 implementation when no cache
is shared between the processing cores or when very large
messages are being transferred. Collective communication
operations show a dramatic improvement, and the IS NAS
parallel benchmark shows a 25% speedup and better cache
efficiency.

1 Introduction

Multicore architectures are ubiquitous today in high-
performance computing, with new architectures promising
increasing core counts and a more complex organization of
memory resources. Despite the lack of consensus on what
the most adequate programing model for massively multi-
core architectures should be, MPI will continue to play a
major role in parallel application development. As a con-
sequence, improving MPI implementations performance in
the intranode communication case using shared memory is
more than ever relevant. This issue has fueled research in
many existing projects, such as [6] or [9]. Communication
libraries (such as MPI) must be able to take full advantage
of the features offered by new, complex multicore archi-

tectures. For instance, processor cores located on the same
node will share not only physical main memory but also part
of the cache hierarchy.

MPI implementations will typically use different trans-
fer mechanisms for communicating small messages, where
low latency is important, versus large messages, where high
bandwidth is important. We previously examined optimiz-
ing small-message communication in [5]. In this paper we
focus on intranode large-message communication. In [4] we
evaluated several methods for large-message communica-
tion over shared memory, including double-buffered mem-
ory copies and kernel module support. Here we expand
on that work by presenting KNEM, a new LINUX kernel
data transfer module, and analyzing its various operating
modes such as asynchronous vs. synchronous or hardware-
supported vs. kernel-thread memory copies. We also ex-
amine the recent LINUX system call vmsplice, which is
designed to allow for efficient data transfer between pro-
cesses. We evaluate all these mechanisms with respect to
throughput and cache pollution.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide background information about large
message transfers in MPICH2-NEMESIS. Section 3 ex-
plains two approaches to implementing single-copy intra-
node transfers (vmsplice and KNEM). Experiments shown
in Section 4 emphasize the performance advantages of the
new methods we designed. We discuss related work in this
area and propose future research directions in Section 5 and
Section 6, respectively.

2 Transferring Large Messages with
MPICH2-NEMESIS

MPICH2 is a widely portable, high-performance imple-
mentation of version 2.1 of the Message Passing Interface
(MPI) standard [13]. The next release (1.1) of MPICH2
will use a communication subsystem called NEMESIS [6],
which utilizes shared memory for intranode communica-
tion and networks for internode communication. Shared-
memory communication in NEMESIS is highly optimized

1



to minimize the latency of small messages and maximize
the bandwidth of large messages. One of the optimizations
for large-message communication is the introduction of an
internal API called the Large Message Transfer (LMT) in-
terface, which is designed to be general enough to sup-
port various mechanisms for transferring large messages. In
particular, the LMT interface supports both one-sided and
two-sided data transfer mechanisms, such as using RDMA
put or get operations (one-sided), copying data to and
from a UNIX pipe (two-sided), and copying data through a
memory-mapped shared-memory buffer (two-sided). This
flexibility allows NEMESIS to use the best transfer mecha-
nism available on each platform for each specific transfer.

Prior to the work described in this paper NEMESIS used a
double-buffering scheme to transfer large messages, as de-
scribed in [4]. This method always results in two copies,
one from the source buffer into the copy buffer and an-
other out of the copy buffer into the destination buffer. This
number of copies cannot be reduced by using the double-
buffering approach. But if two processors are participating
in the transfer, the copies might overlap to some degree, one
thereby partially hiding the cost of the other. However, this
method requires both processors to actively take part in the
transfer, which prevents them from performing useful ap-
plication computation. This method also pollutes the cache
by evicting application data from it as the copy operation is
being performed [4].

Optimally, the data would be transferred by using a sin-
gle copy. In LINUX and other UNIX environments, how-
ever, a process cannot directly access the address space of
another process. In order to achieve a single-copy transfer,
the kernel must be involved. The two methods described in
this paper are to use either a LINUX kernel module called
KNEM or the vmsplice system call. KNEM offers very
good performance with the option of hardware-supported
data transfer and asynchronous operation. However, de-
ploying such a nonstandard kernel module on a system re-
quires administrative privileges, which most users are un-
likely to possess. Using vmsplice has the benefit of being
standard on newer LINUX operating systems; however, it
does not perform as well as KNEM and is unavailable on
non-LINUX systems. The double-buffered copying mecha-
nism is more portable than KNEM and vmsplice (it is avail-
able on any system that supports the mmap system call or
System V shared memory), but it does not perform as well
as the others in all circumstances.

Not all of the methods will be available on all plat-
forms, and some methods will perform better than oth-
ers depending on several factors such as message size or
sender/receiver processes locations on the various cores.
By using the LMT interface, however, NEMESIS is able to
choose the most adequate data transfer mechanism for each
situation.

3 Design and Implementation of Single-Copy
Communication Mechanisms

In this section we describe the implementation of two
new single-memory-copy LMT backends using vmsplice

and KNEM, respectively.

3.1 The vmsplice Large Message Transfer

LINUX kernel 2.6.17 introduced a set of new system calls
to enable the movement of large amounts of data through
sockets, pipes, and files with a minimum of user-space-to-
kernel-space and kernel-space-to-user-space copies. The
vmsplice system call is one of these [2]. To use the
vmsplice system call, the sending and receiving processes
open the same UNIX pipe. Then, instead of calling the
writev system call, the sending process calls vmsplice,
which takes similar arguments. The vmsplice system call
attaches virtual memory pages directly into a kernel pipe
buffer instead of copying the corresponding data from user
space to kernel space. When the receiver calls the readv

system call, the data is then directly copied from these pages
to the destination buffer. In this way the data is transferred
using a single memory copy.

We implemented a new LMT backend in NEMESIS us-
ing vmsplice in this manner. By default the LINUX ker-
nel has a compile-time limitation of 161 pages per pipe
(4 KiB/page), for a total limit of 64 KiB transfered per call
to vmsplice or readv. At first glance this limitation
seems cumbersome; however, in practice it actually im-
proves NEMESIS responsiveness by allowing NEMESIS to
periodically poll for new messages between chunks. There
is a small overhead due to calling the vmsplice system call
several times to transfer a single large message. However
the cost of the system call on a modern processor (about
100 ns on an INTEL XEON) is much lower than copying
a single 64 KiB chunk (approximately 8 µs with 8 GiB/s
memory bandwidth), making this an acceptable trade-off in
order to maintain responsiveness.

3.2 KNEM: Dedicated LMT in the Linux Kernel

The vmsplice LMT has the advantage of working on
all recent LINUX systems. However, it supports only a
blocking and synchronous interface on the receiver side and
cannot benefit from hardware-supported copy offload. To
further study the idea of replacing the original NEMESIS
two-copy model with a kernel-based, single-copy strategy,
we developed a dedicated kernel driver and LMT backend.
We previously had experimented with single-copy trans-
fers within OPEN-MX, an ETHERNET-specific message-
passing stack [8]. We reworked this idea to fit in the context
of a general-purpose MPI implementation.

1controlled by the PIPE BUFFERS definition in pipe fs i.h

2



Send Req List

Send Req (1)

Sender LMT

Send Buffer

Cookie (2)

Recv Buffer

Receiver LMT

Recv Req (4)

Acquire Send Req (5)

Inter−LMT
Communication

(3)

Copy (6)

Figure 1. Large-message transfer with the KNEM cus-
tom kernel module.

KNEM stands for Kernel-Nemesis. It relies on a pseudo-
character device that implements two main communication
commands as depicted in Figure 1. A sender process will
(1) declare a send buffer to KNEM and (2) get a cookie in
return (send command). This cookie is then sent (3) to the
receiver. The receiver will receive data (4) from the declared
buffer by passing a receive buffer along with the send cookie
(receive command) to KNEM. The KNEM driver takes care
of moving data (5) from one buffer to another within the
kernel. The new KNEM LMT backend in NEMESIS uses
these commands and passes the cookie from the sender to
the receiver through the usual NEMESIS user-space ren-
dezvous handshake.

3.3 DMA Engine Backend in KNEM

I/OAT is a set of hardware features implemented in
modern INTEL memory controllers [10]. It specifically con-
tains a dedicated device, called a DMA engine, that can be
used to perform efficient memory copies in the background,
allowing the processor to perform other useful work. Also,
because the processor does not perform the memory copies
itself, the processor’s caches are not polluted. We added the
ability for KNEM to use I/OAT to offload the copying and
synchronously poll for completion before returning to user-
space. This feature can be enabled through a parameter to
the KNEM receive command.

Normally, there is no guarantee that any virtual address
(which is used by applications) will always map to the same
underlying physical address (which is used by any hardware
such as I/OAT). Indeed, the virtual memory management
of an operating system may, for instance, swap pages to the
disk in case of memory shortage. This is a problem if a page
is swapped out while the I/OAT hardware is performing a
copy. In order to ensure that the mapping will not change,
the KNEM kernel module pins application buffers down in
physical memory before passing them to the I/OAT hard-
ware. In fact, because the receiver process cannot easily
access the sender address space in LINUX, the send buffer
is pinned even when I/OAT is not used. So, the send KNEM
command will always pin the sender buffer, while the re-
ceive command pins the receiver buffer only when I/OAT
is used.

Submit
Copy
Status

Offloaded Message Copy

Nemesis Progressing CompletionRecv Init

Pinning

Nemesis

knem Driver

DMA Engine

Copy
Submit

Status Copy
Offloaded

Figure 2. Asynchronous large-message transfer with
KNEM and I/OAT copy offload.

3.4 Asynchronous KNEM Model

The I/OAT DMA Engine hardware frees the host proces-
sors while the copy is performed in the background, thereby
opening an opportunity to overlap the copy with useful
computation. Moreover, the user space NEMESIS imple-
mentation expects to be able to poll for incoming messages
periodically. We thus designed an asynchronous KNEM im-
plementation that lets the receiver process return to user-
space while the copy is performed in the background.

To do so, we removed the blocking completion waiting
in KNEM. Now, in order to notify the library that the copy
has completed, the library passes an address to a status vari-
able to KNEM. When the copy operation has completed,
KNEM writes Success in the status variable. The library then
has to poll the variable to check for completion.

This model is difficult to implement because the I/OAT
hardware interface is polling based. Since no interrupt is
raised on copy completion, having the kernel driver change
the status requires that it first polls for I/OAT completion.
Instead of using this CPU consuming solution, we decided
to benefit from the fact that I/OAT processes copy requests
in order. After submitting a large message copy, we submit
a single-byte copy that writes Success in the status variable
as depicted in Figure 2. In this way, not only the copy but
also its completion notification are performed in the back-
ground, enabling full overlap.

We also designed an asynchronous model for non-
I/OAT transfers by offloading the memory copy to a ker-
nel thread that runs on the receive process core. This model
enables overlap of the memory copies but it implies that
the user-space NEMESIS process and the kernel thread will
compete for the same core. While we expect this to slightly
reduce the performance of the copy, it does allow the copy-
ing to proceed asynchronously with user-space progression
or computation.

3.5 Deciding Which LMT to Use

NEMESIS can now benefit from two new LMT meth-
ods, with and without I/OAT. Of the two methods, KNEM
is expected to provide the best performance because it has
been designed for MPI data transfer whereas vmsplice is
a general-purpose solution. Users thus should use KNEM if
loading a custom kernel module is acceptable. In situations
where this is not acceptable, the vmsplice LMT should
be used, if possible, because it works on all modern LINUX
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kernels and will improve performance by reducing the num-
ber of memory copies.

Using the KNEM LMT backend raises the question of
when to switch from a regular copy to an I/OAT offloaded
copy. While looking at early performance numbers on
2.33 GHz XEON processors with a 4 MiB L2 cache shared
between 2 cores, we observed that KNEM should offload
copies to I/OAT hardware when the size passes 1 MiB. We
ran the same test between 2 cores not sharing a cache and
observed that the threshold jumps to 2 MiB. Running the
experiment on another host with 6 MiB L2 caches increased
the threshold by 50%.

These results led us to correlate the largest cache size (L2
here) and number of processes using it with the observed
threshold. Indeed, a process receiving data with I/OAT
copy offload does not use any cache line. When not us-
ing I/OAT, however, the process first fetches the data in its
cache when reading from the sender pages into its processor
registers. Then it stores the data back in its receive buffer
and thus fills its own cache again. In order to prevent com-
munication from flushing the entire local cache, the cache
must be at least two times larger than messages being re-
ceived. Larger messages should be preferably transfered
with I/OAT copy offload. From this idea, we derive the
following message size threshold.

DMAmin =
Cache Size

2× Processes Using The Cache

When a 4 MiB L2 cache is shared between 2 processes,
the formula leads to our 1 MiB threshold. When no cache is
shared, each process uses its own cache; the threshold thus
jumps to 2 MiB as expected, and the threshold is propor-
tional to the cache size as expected. Then, since we expect
users to run one MPI process per core, the threshold may
actually be computed from architecture characteristics only,
instead of depending on running processes.

DMAmin =
Cache Size

2× Cores Sharing The Cache

Another threshold that should be discussed is when
NEMESIS should switch from its usual two-copy strategy to
KNEM or vmsplice. While the vmsplice LMT does seem
to help performance before 64 KiB (the hardwired thresh-
old), KNEM starts being interesting near 16 KiB messages.
Since we do not know how to predict this threshold dynam-
ically, however, we will not change it yet.

4 Performance Evaluation

We now present performance evaluations of our new
LMT backends within MPICH2/NEMESIS. Most experi-
ments were run on a dual-socket quad-core INTEL XEON
E5345 (2.33 GHz). Each processor has two 4 MiB L2
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Figure 3. IMB Pingpong with the vmsplice LMT using
vmsplice (single-copy) or writev (two copies). The LMT
is enabled when the message size passes 64 KiB.

caches shared between a pair of cores. We also ran ex-
periments on other hosts, such as a single-socket quad-core
XEON X5460 (3.16 GHz) with two 6 MiB L2 caches, and
observed similar behavior.

4.1 vmsplice LMT

Figure 3 presents the throughput of a ping-pong
measured with the INTEL MPI benchmark (IMB) over
MPICH2. As expected, removing the copy on the send
side by using vmsplice instead of writev dramatically
increases performance, up to a factor of 2 here. Compared
to NEMESIS’ usual two-copies LMT implementation, the
new vmsplice LMT appears to be interesting when no
cache is shared between the cores running the processes. If
a cache is shared between these cores, however, NEMESIS
remains faster because the large overhead of copies is com-
pensated by the reduced data access latency thanks to this
cache. Therefore, we feel that NEMESIS should dynami-
cally enable the vmsplice LMT when no cache is shared
between the processing cores. As pointed out later in this
section, this result is specific to very simple communica-
tion patterns such as ping-pong. Collective operations will
exhibit a larger improvement thanks to vmsplice reducing
the overall cache pollution and CPU utilization.

4.2 KNEM Performance

Figures 4 and 5 present the throughput of the same
IMB Pingpong program with the KNEM LMT. As expected,
KNEM goes far beyond vmsplice improvements because
KNEM has been designed for MPI access patterns, whereas
vmsplice suffers from higher initialization costs that may
be related to its targeting of multimedia applications.

If no cache is shared between the processing cores,
KNEM is more than three times faster than NEMESIS and
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Figure 4. IMB Pingpong throughput between 2 pro-
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Figure 5. IMB Pingpong throughput between 2 pro-
cesses not sharing any cache.

twice as fast as vmsplice, reaching up to 3.5 GB/s. If a
cache is shared between the processing cores, KNEM re-
mains almost as fast as NEMESIS. We measured that KNEM
becomes interesting when the message size passes 8 KiB,
whereas NEMESIS usually enables LMT only after 64 KiB.

The KNEM I/OAT backend becomes interesting after
1 MiB, as predicted by the dynamic threshold that we pre-
sented in Section 3.5. Indeed, submitting copies to I/OAT
requires an access to the physical device for every physi-
cally contiguous chunk. So the startup overhead of I/OAT
remains higher than the non-I/OAT KNEM implementa-
tion. For very large messages, however, I/OAT reduces the
CPU consumption and cache pollution and thus improves
the overall performance, by a factor of 2.5 over NEMESIS.
The I/OAT performance is not very stable because of page
alignment problems on which we are still working.

Current INTEL XEON quad-core processors make it pos-
sible to bind two processes on the same die without shar-
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Figure 6. Performance comparison of KNEM syn-
chronous and asynchronous models.

ing a cache. The behavior of our strategies in this case is
similar to the non-shared-cache case (with a small overall
throughput degradation due to a single memory link be-
ing involved). Moreover, this architecture appears to be a
temporary workaround until true quad-core processors are
available. According to vendor roadmaps, all upcoming x86
processors will share a large cache across all cores. We will
thus not detail this case further.

4.3 Asynchronous Model

We explained in Section 3.4 that the KNEM driver
can perform asynchronous data transfers, either thanks to
I/OAT copy offload being processed in the hardware or
by using a kernel thread performing memory copies. Fig-
ure 6 presents the corresponding performance evaluation.
It shows that offloading regular copies into a kernel thread
in the non-I/OAT case significantly reduces the overall
throughput since the user-level process competes with the
kernel thread for the CPU. However, the I/OAT model is
improved by the asynchronous model because the work is
performed by a dedicated hardware in the background. For
this reason, KNEM enables the asynchronous mode by de-
fault only when I/OAT is used.

If greater reactivity is required in NEMESIS, however,
the asynchronous model may be needed all the time any-
way since the NEMESIS user-process needs to periodically
progress while the kernel is working. The synchronous
model indeed prevents NEMESIS from polling during sev-
eral milliseconds when copying several megabytes of data.

The kernel-thread based asynchronous model may also
help when there are fewer processes than cores on the ma-
chine. Indeed, if half the cores can be dedicated to KNEM
kernel threads while the actual processes use the other half,
no competition for the CPU occurs. If the processes can
be bound near their associated kernel thread, the latter may
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benefit from the process cache and thus copy as fast as the
synchronous model.

4.4 Collective Operations

Figure 7 illustrates the intranode performance implica-
tions of MPI collective communication with vmsplice,
KNEM and I/OAT. We observed similar behavior for several
operations but present only Alltoall results here. This figure
confirms that KNEM provides a dramatic performance im-
provement thanks to reduced cache pollution and CPU us-
age. The throughput is up to five times higher for medium
messages (near 32 KiB) and twice as high for very large
messages thanks to I/OAT copy offload. This graph also
shows that vmsplice provides a smaller but still worth-
while improvement for users who cannot afford loading
KNEM’s custom kernel module.

We note that I/OAT copy offload becomes interesting
near 200 KiB, which is much lower than our 1 MiB pre-
dicted threshold in Section 3.5. This is related to the
fact that 8 processes participate in this Alltoall benchmark,
whereas only two processes participate in the Pingpong
benchmark. Since more messages are transferred simulta-
neously, the cache and memory bus utilization is higher and
thus causes I/OAT to be interesting earlier. Moreover, mix-
ing I/OAT and direct-copy inside a single Alltoall operation
seems to improve performance further. We think that this is
related to cache affinities between processes.

Similarly, this memory-intensive collective operation
suffers earlier from NEMESIS default two-copy strategy.
KNEM is thus interesting starting at 4 KiB messages,
whereas NEMESIS usually enables the LMT after 64 KiB.
Therefore the threshold’s current value should be reduced
and dynamically set as well.

Table 1. Execution time of some NAS Parallel Bench-
marks.

NAS default vmsplice KNEM KNEM Speedup
Kernel LMT LMT kernel copy I/OAT
bt.B.4 454.3 s 452.1 s 453.6 s 452.3 s + 0.4%
cg.B.8 60.26 s 61.87 s 60.72 s 61.59 s - 2.2%
ep.B.4 30.45 s 30.94 s 32.40 s 30.72 s - 0.9%
ft.B.8 39.25 s 37.00 s 36.40 s 35.50 s + 10.6%
is.B.8 2.34 s 1.95 s 1.92 s 1.86 s + 25.8%
lu.B.8 85.83 s 87.45 s 86.09 s 88.32 s - 2.9%

mg.B.8 7.81 s hang2 7.89 s 7.98 s - 2.1%
sp.B.8 302.0 s 311.4 s 298.9 s 299.4 s + 0.9%

Table 2. L2 Cache Misses. IS and Alltoall used all 8
cores. Pingpong processes were bound to different
dies.

default vmsplice KNEM KNEM
LMT LMT kernel copy I/OAT

64KiB Pingpong 91 166 52 92
4MiB Pingpong 45k 17k 14k 3.7k
64KiB Alltoall 2783 1266 582 833
4MiB Alltoall 624k 124k 262k 131k

is.B.8 11.25M 9.41M 9.50M 8.92M

4.5 NAS Parallel Benchmarks

Table 1 presents the execution times of some NAS Par-
allel Benchmarks. Most of these benchmarks do not send
many large messages and therefore show small or insignifi-
cant changes in performance (NAS results slightly vary be-
tween successive runs). However, IS, which is known to use
very large messages, shows a 25% performance improve-
ment when using KNEM and I/OAT copy offload. As ex-
pected, the vmsplice LMT brings an interesting gain as
well, thanks to fewer memory copies being involved. FT
also shows a 10% improvement thanks to this work.

To explain the dramatic performance improvement in IS
further, we present in Table 2 the number of cache misses3

that occur during the execution, which we measured with
PAPI [3]. It shows that the execution time of IS is actu-
ally somehow linear with the total number of cache misses.
KNEM and vmsplice using a single memory copy implies
less cache pollution, therefore less cache misses and better
performance.

Looking at point-to-point and collective behavior un-
derneath also confirms that KNEM and vmsplice signifi-
cantly avoid cache misses for large messages and collec-
tives, whereas the regular NEMESIS implementation com-
petes only for small patterns.

2This hang is due to a known, but as of yet unresolved, bug in NEME-
SIS, not because of the vmsplice LMT backend.

3Cache miss rates are not presented because the compared strategies
have noncomparable total numbers of cache requests due to their very dif-
ferent implementations.
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5 Related Work

Intranode communication has been the subject of much
research in the past decade. All major MPI implementa-
tions such as OPEN MPI [9] and MVAPICH [15] provide
a similar two-copies strategy through a shared memory-
mapped file. Some work has been carried out to improve
the latency of small messages [6] and large messages [4]. It
has been shown that using the software loopback of mod-
ern network interface [12] may significantly improve per-
formance. However, this idea overloads the I/O bus while
only the memory bus should be involved.

For more than two years now, vmsplice has been avail-
able in the LINUX kernel. It has been used mainly as a
way to move large flows of data across multiple applica-
tions, for instance when processing multimedia streams. To
the best of our knowledge, NEMESIS is the first general-
purpose and high-performance MPI implementation that
benefits from this standard way to communicate while re-
ducing the amount of copies.

LIMIC2 [11] implements a single-copy model through
the LINUX kernel in a similar way to KNEM. However,
it does not support I/OAT copy offload, vectorial buffers,
or asynchronous data transfer. It has been used within
MVAPICH2 with configurable thresholds for switching
from the usual two-copies to the kernel-based, single-copy
model [7]. However, it does not provide any automatic
threshold, whereas our KNEM LMT dynamically computes
its thresholds depending on the hardware characteristics.

I/OAT copy offload [1] was originally designed as a way
to improve datacenter networking performance by reducing
the TCP stack overhead on the receive side [10]. User-
level memory copy offload with the I/OAT DMA Engine
has been studied in a single application [16]. Its compari-
son with offloading a regular memcpy in a thread revealed
the same conclusion as ours: I/OAT becomes interesting for
megabyte and larger messages [17]. Our work is, however,
to the best of our knowledge, the first to experiment I/OAT
copy offload between different user-level applications in a
general purpose MPI implementation.

Direct-copy between user processes through the kernel
has actually been used in some interconnect-specific im-
plementations such as MX [14], which only works when
MYRICOM hardware is used for internode communication.
OPEN-MX is even able to offload this copy on I/OAT hard-
ware [8], but it requires ETHERNET networking for inter-
node communication. We used this implementation and re-
worked it to fulfill the requirements of the general-purpose
MPI implementation in NEMESIS.

6 Conclusions and Future Work

We have presented several new techniques for intran-
ode message passing in the context of MPICH2, a general-

purpose MPI implementation. First we exploited the LINUX
vmsplice facility to provide high bandwidth communica-
tion across a range of LINUX versions with no modifica-
tion to the standard kernel. Second we have shown the
implementation and benefits of using the custom KNEM
kernel module, including even better performance than the
vmsplice implementation.

The KNEM module has several additional advantages
over previous methods, such as asynchronous transfers and
support for I/OAT offloading. Asynchronous transfers help
to improve the liveness of the MPI implementation, while
I/OAT improves both implementation liveness and reduces
the amount of processor usage required to perform the trans-
fer. In addition, I/OAT provides much greater performance
at very large message sizes (> 1MiB). As I/OAT technol-
ogy becomes more widely available in commodity clusters,
we expect this technique to become increasingly important.

One of the major advantages to the vmsplice approach
to interprocess data transfer is its ubiquity, in contrast to a
custom kernel module that must be installed such as KNEM.
However, the KNEM I/OAT offload support shows much
higher performance in certain scenarios than the current im-
plementation of vmsplice. Future work in this area will
involve examining the feasibility of integrating I/OAT of-
floading into vmsplice-based transfers.

Performance evaluation shows that our work signicantly
improves MPICH2, first by bringing high throughput even
when no cache is shared between the processing cores, and
second by maintaining this result, up to 2 GB/s, even for
very large messages, thanks to I/OAT copy offload. Our
study of collective operations reveals as expected that re-
ducing the number of memory copies during large message
transfers improves performance dramatically thanks to less
CPU utilization and better cache efficiency. The large mes-
sage intensive NAS IS indeed shows far fewer cache misses
and a 25% speedup thanks to KNEM.

We have also explored and highlighted the importance
of using dynamically computed thresholds for selecting the
optimal transfer technique. No single method is optimal
for all situations, and so a blended approach is essential for
high performance for general benchmarks and applications.
There is significant room for future work investigating more
sophisticated techniques for computing thresholds than the
simple heuristics presented here. For example, it may be
possible to lower thresholds for collective communication
with the assistance of the upper layers of the MPICH2
stack because the upper layer is aware when multiple large
message communications will be occurring in parallel (see
Section 4.4). Smaller hardware cache characteristics may
also have to be involved when looking at smaller thresh-
olds, such as where to switch from NEMESIS two-copy to
the LMT.

The increasing number of cores and large, shared caches
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in the upcoming processors such as INTEL NEHALEM, and
the democratization of nonuniform memory access archi-
tecture (NUMA), will keep raising the need to carefully
tune intranode communication according to process affini-
ties. We plan to improve our model to automatically ex-
ploit these new architecture using the right strategies and
thresholds. We also plan to improve KNEM by enabling
more communication overlap and easier reactivity thanks
to a more flexible driver interface. The idea of moving the
knowledge of collective operations down to the LMT also
merits study because it may factorize expensive data manip-
ulations currently performed on a per message basis in the
LINUX kernel.
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